A Rigid-Field Hydrodynamics approach to modeling the magnetospheres of massive stars
نویسندگان
چکیده
We introduce a new Rigid-Field Hydrodynamics approach to modeling the magnetospheres of massive stars in the limit of very-strong magnetic fields. Treating the field lines as effectively rigid, we develop hydrodynamical equations describing the 1-dimensional flow along each, subject to pressure, radiative, gravitational, and centrifugal forces. We solve these equations numerically for a large ensemble of field lines, to build up a 3-dimensional time-dependent simulation of a model star with parameters similar to the archetypal Bp star σ Ori E. Since the flow along each field line can be solved for independently of other field lines, the computational cost of this approach is a fraction of an equivalent magnetohydrodynamical treatment. The simulations confirm many of the predictions of previous analytical and numerical studies. Collisions between wind streams from opposing magnetic hemispheres lead to strong shock heating. The post-shock plasma cools initially via X-ray emission, and eventually accumulates into a warped, rigidly rotating disk defined by the locus of minima of the effective (gravitational plus centrifugal) potential. But a number of novel results also emerge. For field lines extending far from the star, the rapid area divergence enhances the radiative acceleration of the wind, resulting in high shock velocities (up to ∼ 3, 000 km s−1) and hard X-rays. Moreover, the release of centrifugal potential energy continues to heat the wind plasma after the shocks, up to temperatures around twice those achieved at the shocks themselves. Finally, in some circumstances the cool plasma in the accumulating disk can oscillate about its equilibrium position, possibly due to radiative cooling instabilities in the adjacent post-shock regions.
منابع مشابه
A Rigid-Field Hydrodynamics approach to modelling the magnetospheres of massive stars
We introduce a new Rigid-Field Hydrodynamics approach to modelling the magnetospheres of massive stars in the limit of very strong magnetic fields. Treating the field lines as effectively rigid, we develop hydrodynamical equations describing the one-dimensional flow along each, subject to pressure, radiative, gravitational and centrifugal forces. We solve these equations numerically for a large...
متن کاملWind channeling, magnetospheres, and spindown of magnetic massive stars
A subpopulation (∼10%) of hot, luminous, massive stars have been revealed through spectropolarimetry to harbor strong (hundreds to tens of thousand Gauss), steady, large-scale (often significantly dipolar) magnetic fields. This review focuses on the role of such fields in channeling and trapping the radiatively driven wind of massive stars, including both in the strongly perturbed outflow from ...
متن کامل2D Computational Fluid Dynamic Modeling of Human Ventricle System Based on Fluid-Solid Interaction and Pulsatile Flow
Many diseases are related to cerebrospinal .uid (CSF) hydrodynamics. Therefore, understanding the hydrodynamics of CSF .ow and intracranial pressure is helpful for obtaining deeper knowledge of pathological processes and providing better treatments. Furthermore, engineering a reliable computational method is promising approach for fabricating in vitro models which is essential for inventing gen...
متن کاملCFD Modeling of Gas-Liquid Hydrodynamics in a Stirred Tank Reactor
Multiphase impeller stirred tank reactors enhance mixing of reacting species used in a variety of chemical industries. These reactors have been studied based on Computational Fluid Dynamics (CFD) that can be used in the analysis, design and scale up of these reactors. Most of the researches done in this area are limited to single phase reactors, and a few remaining two phase flow investigat...
متن کاملIncompressible smoothed particle hydrodynamics simulations on free surface flows
The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH). In the current ISPH method, the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...
متن کامل